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Abstract: Time histories often vary too much to determine root cause of signal shift. Frequency information and 

extracted modal properties can correlate to structural health through quantitative change metrics. Herein, fifty-

one modal-based damage indices are considered in a total of three directions. These metrics are combined via 

vector resultants and Genetic Algorithm to visualize final relative stiffness results by location of data capture using 

a color code. This work presents inspection and data mining on an obsolete three-span truss highway bridge from 

1953 or 1941 (disputed). Tri-axial deck data was captured in a grid for all three spans, and the new damage 

detection methodology is applied to Spans 1 and 2 with Span 3 as control. Comparative analysis among the three 

spans quantified joint effects, and end damages due to both scour and spalling were identifiable. Furthermore, 

unbiased analyses provided similar results to those biased by visual inspection. A more pointed visual inspection is 

thus permitted post-analysis. 
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I.   INTRODUCTION 

This paper applies a new damage detection methodology to locate and quantify damage on a three-span highway bridge. 

In 2015 the MS Highway 7 Bridge over the Tallahatchie River was being replaced by a single-span prestressed concrete 

structure by the Mississippi Department of Transportation. The truss bridge was built in either 1953 or 1941 (disputed). 

Each simple span was “identical” at 120’ long and 26’ wide with 13’-6” vehicle and 20’ overall truss height.  

The Multi-Function Dynamics Laboratory in the Department of Civil Engineering at the University of Mississippi was 

given four hours to inspect said bridge before demolition. A quick cursory visual inspection noted (1) Span 1 had piers 

showing severe scour just above the water line, (2) Span 2 had a widely opened expansion joint at Span 1 showing 

spalling, and (3) overheight vehicle damage and both ends of the bridge. These items were confirmed by the lead 

supervisor; in fact, the new bridge opened days early due to his observation of concrete spalling in Span 2. Note that the 

actual condition of the deck underneath remains unknown. 

The damage detection methodology compares two states of a structure, usually subsequent inspections of the same 

structure. Based upon observed bridge condition, Span 3 is considered the “control” in the numerical experiment. That is, 

Span 1 will be compared to Span 3 to quantify scour effects, and Span 2 will be compared to Span 3 to quantify expansion 

joint effects. This assumes that data can be affordably and conveniently captured by a bridge inspector; enough sensor 

time histories are taken to locate and quantify relative weakness; and frequency variations are due to damage rather than 

operating conditions. On the day of testing, the ambient temperature was steady near 30
o
F, and the deck temperature 

ranged from 33.4
o
F to 38.8

o
F. Wind gusts of 15-20mph were predicted; the contractor measured a 13mph steady wind at 

one point.  

The X, Y, and Z directions were selected to be the bridge’s longitudinal, transverse, and vertical directions, respectively. 

Assumed level due to minimal road crowning, each span had 27 test locations: the deck grid was divided into nine points 

longitudinally at 15’ spacing and three points laterally at 13’ spacing. This results in a total of 81 nodes, but one point on 

Span 1 was omitted by accident. Each test node was sequentially measured under ambient vibration by a PCB Model 

356B18 (1V/g) connected by traditional BNC cabling to a NI 9234 module in a NI CompactDAQ chassis, connected by 

USB to a laptop running NI LabVIEW (Figure 2). Accelerations were measured at 2048 Samples per second for 30 

seconds. Examination of the time histories on Span 1 found a maximum longitudinal X-acceleration of 50.4±1.794mg, a 

maximum transverse Y-acceleration of 102.7±1.097mg, and a maximum vertical Z-acceleration of 35.8±1.247mg.  
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Frequency information was extracted from the 78 Span 1 traces (26 nodes x 3 directions), the 81 Span 2 traces (27 nodes 

x 3 directions), and Span 3 traces (both 78 and 81 trace sets). Fast-Fourier Transforms (FFTs) of the power 2^20 resulted 

in a frequency resolution of 0.001953Hz. The range of interest is 0.5 to 110Hz, and no filter or window was applied.  

II.   MODAL ANALYSIS 

During modal decomposition, frequency peak selection is a crucial step, and peak-picking techniques vary widely. This 

step can be very time-consuming since the user has to sequentially check each frequency peak as well as the 

corresponding mode shapes. An open question is the order of operations for combining the 78 or 81 uni-directional FFTs 

into a single 3-D cumulative trace. To ease peak-picking and focus on stable peaks, eight combination methods are 

employed herein. Methods 1 through 3 provide similar results: all sum the directional channels and obtain magnitude, but 

Method 1 sums all directions, Method 2 takes the square root of the sum of the squares, and Method 3 takes the square 

root of the sum. Methods 4 and 5 provide similar results: Method 4 takes the magnitudes, sums all directions, and then 

sums all channels, while Method 5 normalizes the magnitudes before summing. Methods 6 through 8 provide similar 

results: all are based upon the power spectral density estimate via Welch's method with the full frequency range and 50% 

overlap. The resulting 78 or 81 smoothed traces are summed by all channels then directions (Methods 6 and 7) or summed 

by all directions then channels (Method 8). Method 6 simply sums all directions while Method 7 takes the square root of 

the sum. 

After modal decomposition, matching modes is conducted by users and thus is subjective. Here, Modal Assurance 

Criterion (MAC) similarities and frequency differences are used to automate matching. Again, the open question of order 

of operations affects a 3-D resultant MAC. Uni-axial MAC is calculated as the square of the dot product of two mode 

shapes in one direction which is then normalized by both amplitudes [1]. Two forms of 3-D MAC are defined as “MAC 

R,” where each direction is summed and then a vector magnitude is taken, and “MAC S,” where the vector magnitude of 

the mode shape is taken before summing directions.  

For matching of Spans 1 and 3, 26 test nodes and 78 captured signals were analyzed. Potential mode shapes considered 

include 54 Span 1 peaks and 61 Span 3 peaks for a possible combination of 3,294 matches. Fig. 1 shows the output plots 

of the 3-D MAC values. The yellow colors represent two potentially matching operational deflected shapes while dark 

blue shows dissimilarity. Any uni-directional MAC greater than 0.10 was considered of interest: this reduced the possible 

matches to 943. As the two spans are assumed “identical,” natural frequency variations should be relatively small; 

therefore, considering frequency differences of less than 2.5Hz further reduced possible matches to 91. These were 

examined by a human user, who found MAC R and MAC S could vary. An additional bin of the top 85% of both MAC R 

and MAC S proved useful. This provided 47 possible mode matches. Detailed examination of each possible match 

provided the five matched mode shapes in Table 1. All frequencies decreased in this case. 

For matching of Spans 2 and 3, 27 test nodes and 81 captured signals were analyzed. Potential mode shapes considered 

include 31 Span 2 peaks and 64 Span 3 peaks for a possible combination of 1,984 matches. Any uni-directional MAC 

greater than 0.10 and frequency differences of less than 5Hz were considered of interest. The result was 282 possible 

mode matches. The additional bin of the top 95% of both MAC R and MAC S proved useful; this provided 47 possible 

mode matches. Detailed human examination of each possibility delivered the five matched mode shapes, also in Table 1. 

Note that Span 2 data provided a noisier FFT. 

 

FIGURE 1: 3-D MAC R (left) AND MAC S (right) FOR 3,294 POSSIBLE MATCHES FOR SPAN 3 vs. 1. 
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III.   DAMAGE DETECTION 

A variety of quantitative metrics called Damage Indices (DI) have been proposed in literature. These involve some 

mathematical computation on a Damage Sensitive Feature (DSF) [2]. This work proposes that one single metric will not 

model all types of damage nor work for all types of structures. Rather, an artificially intelligent approach using the 

Genetic Algorithm (GA) can combine multiple metrics into the best model for each individual data set. 

Yet again, the open question of order of operations affects a 3-D combination of each directional DI. The present study 

adopts two combination methods to calculate combined DIs generated from modal properties in three directions. Denoted 

Resultant or “R,” the first method uses root sum square method to calculate a resultant DI using individual DIs in each x, 

y and z direction. A combined DI at the j
th

 measured node is calculated as 

     √    
      

      
  

TABLE 1: MATCHED OPERATIONAL DEFLECTED SHAPES 

Span 1 Freq. 

(Hz) 

Span 3 Freq. 

(Hz) 
MAC X MAC Y MAC Z MAC R MAC S 

Freq. Difference 

(Hertz = Hz) 

1.0918 2.5273 0.2508 0.1040 0.4593 0.3081 0.1922 -1.44 

4.2598 4.4688 0.0337 0.1509 0.2443 0.1669 0.2062 -0.21 

11.5371 11.7734 0.0509 0.0946 0.4300 0.2559 0.0966 -0.24 

29.8984 30.7129 0.1953 0.0682 0.0631 0.1249 0.0572 -0.81 

106.3301 108.3125 0.2744 0.0204 0.1076 0.1705 0.1569 -1.98 

Span 2 Freq. 

(Hz) 

Span 3 Freq. 

(Hz) 
MAC X MAC Y MAC Z MAC R MAC S 

Freq. Difference 

(Hertz = Hz) 

1.3086 3.9805 0.0090 0.0847 0.1750 0.1124 0.0700 -2.67 

4.2734 4.2852 0.0123 0.0384 0.1386 0.0833 0.1286 -0.01 

7.1797 7.2070 0.0840 0.1428 0.4026 0.2514 0.3208 -0.03 

13.9551 11.9531 0.0706 0.1288 0.0932 0.1004 0.0834 2.00 

93.3164 93.3242 0.0822 0.4201 0.0895 0.2525 0.0708 -0.01 

where DIjx, DIjy, and DIjz are any DI calculated using only the modal properties in x, y and z directions, respectively. 

Denoted Spatial or “S,” the second combination method first computes the magnitude of mode shapes before entering 

them into any single DI. The 3-D magnitude of a mode shape is calculated as 

    √   
     

     
  

where    ,    , and     represent the mode shapes at i
th
 measured node in x, y and z directions, respectively. In short, the 

first method takes a resultant of directional DIs, and the second method inserts a resultant mode shape into DI algorithm. 

Herein, employed indices comprise four DSFs (mode shape deflection, flexibility [3], curvature [4] and [5], and strain 

energy [6]) calculated via common mathematical methods (difference [7], division [8], percentage [8], COMAC [9], 

probability [10], Z-score [10], and CDF [11]) where appropriate. Thus, 17 algorithms of uni-axial DIs are generated, and 

application in each of 3 directions produces 51 directional DIs. The Resultant and Spatial combination methods are then 

applied as appropriate to generate 24 combined three-dimensional DIs. Their nomenclature is (method)(DSF)(R or S). 

The goal of implementing GA is to combine all 24 DIs into one single best-fit index. However, the magnitude of each DI 

can vary due to algorithm difference. To avoid numerical imbalance in combining DIs, each index is normalized so that 

their values are in the range of 0 to 1, showing percent possibility of damage. To also make the optimized DI indicate the 

possibility of damage, a weighted average function is built, and GA’s objective function is minimizing the residual 

between this weighted average and a Target Vector (TV). An unbiased or unsupervised analysis would have identical 

weights in the TV, representing no a priori knowledge. A biased or supervised analysis has binary weights of both 0 and 

1 in the TV, representing 0% or 100% suspected damage location from a visual inspection, for instance.  

Based upon prior work, default settings on GA have been determined [12]. The solution tolerance is set to 1E-15, and the 

population size is 1,000. The maximum number of generations is set to 5,000, which was only met once in this work. The 

mutation function is adapt feasible with a ratio of 0.05. The crossover function is scattered with a fraction of 0.80. Three 

rounds of 5 runs each are employed in order to prevent missing a significant DI. A single DI is considered influential if its 
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weight function exceeds a threshold of 20%; any significant DIs are removed so as to analyze the remaining indices for 

their influence. A metric of success is the Fitness Value (FV): a lower FV indicates a better fit. 

Using Span 3 as the control, GA was applied DIs for Spans 1 and 3 as well as Spans 2 and 3. The cases were analyzed: (1) 

unbiased with 100% TV, assuming damage everywhere; (2) unbiased with 0% TV, assuming no damage is expected; and 

(3) biased with 100% TV values where visual inspection indicated (scour or spalling), else 0% TV values. The most 

important output plot is the best fit indication of damage; for ease, a color code is employed. Damage is more likely with 

a higher possibility of damage percentage, so the bins are green (0-30%), blue (30%-50%), magenta (50%-70%), red 

(70%-90%), and black (90%-100%). Note that black indication does not mean a high percentage of collapse: it only 

quantifies a high possibility of relative structural weakness at the location. An inspector would be able to quickly focus in 

on potentially dangerous areas of the structure. 

A. Results of Span 1 versus Span 3  

Employing the same data and matched modes, Table 2 presents the GA results for all three cases of TV. Recall that 

Round 1 includes all 24 DIs while Rounds 2 and 3 examine reduced numbers of less influential DIs. Therefore, it makes 

sense that the Fitness Value (FV) increases with subsequent analyses, showing a lesser fit.  Note that the unbiased damage 

detection results with 100% TV is unsuccessful. An inspector would not be able to decipher a relative weakness since 

indication varies between 15% to 36%, less than a 50% chance everywhere. The FVs are more than double any other TV 

case, indicating poorer fit. Round 1 uses a remarkable 12 of 24 DIs to attempt to make any kind of fit. 

Fig. 2 (left) shows successful damage detection with a 0% TV: numerically significant detection of 86% is shown at one 

expected location without target bias. No false positives exist, but (x,y)=(0 feet, 0 feet) exhibits what appears to be a false 

negative. Perhaps the support scour was much more significant at (x,y)=(0 feet, 26 feet), so much so that it also affects 

(x,y)=(15 feet, 26 feet). However, this result is Round 2, not Round 1 in which an extreme outlier at (x,y)=(30 feet, 0 

feet). Future work must examine if a noisy signal at one location is magnified by the normalization process, especially for 

low level TVs. Test node resolution also needs further examination. 

Fig. 2 (right) also shows successful biased damage detection: numerically significant detection of 88% is shown at one 

expected location. No false positives exist, but (x,y)=(0 feet, 0 feet) exhibits a low 27% possibility of damage, which 

could be numerical or actual. Interpretation of a biased damage detection plot requires more attention to detection range as 

this study quantifies the relative weakness with bias for specific locations. Note that Table 4 shows that Round 2 with the 

biased TV did not converge, meeting maximum generations. Therefore, Rounds 2 and 3 should be omitted.  

Here, the similarity between the unbiased and biased plots in Fig. 2 is extraordinary. The most indicated point (x,y)=(0 

feet, 26 feet) measures 86% and 88% while the second most indicated point (x,y)=(15 feet, 26 feet) measures identically 

at 44%. This consistency would leave a user with more confidence regarding these results. The FV of the biased case 

versus the unbiased case is lower, indicating a better fit as expected. The number of generations to fit is nearly 

interchangeable, but the unbiased case took 777% longer to run. The unbiased case selected 100% Spatial Strain Energy 

Percentage (percSES) and 100% Spatial Strain Energy Division (divSES); the biased case also selected 64.35% percSES 

and 27.96% divSES along with 100% Z-normalized Strain Energy (ZSE). The unbiased and biased cases removed four 

and ten DIs, respectively, from the fit with percentages under 0.001%.  

TABLE 2: DAMAGE DETECTION RESULTS FOR SPANS 1 VERSUS 3 

Unbiased Target Vector = 100% 

   

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 2.2892 1948 12 None clear 

Round 2, 5 Runs 2.6891 852 4 None clear 

Round 3, 5 Runs 2.6210 411 3 None clear 

Unbiased Target Vector = 0% 

   

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 1.0774 1397 3 Outlier Node at (30 ft, 0 ft) 

Round 2, 5 Runs 1.1293 1198 2 Correct End Nodes 

Round 3, 5 Runs 1.3450 1408 2 Correct End Nodes, more scatter 
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Biased Target Vector = 2 End Points 

  

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 0.9810 1121 3 Correct End Nodes 

Round 2, 5 Runs 1.6147 5000 5 Correct End Nodes, more scatter 

Round 3, 5 Runs 1.6745 941 3 Scatter 

 

 

FIGURE 2: DAMAGE DETECTION RESULTS FOR SPANS 1 VERSUS 3: (left) UNBIASED WITH 0% TV, 

(left) BIASED WITH VARIED TV 

B. Results of Span 2 versus Span 3  

Employing the same data and matched modes, Table 3 presents the GA results for all three cases of TV. Recall that 

Round 1 includes all 24 DIs while Rounds 2 and 3 examine reduced numbers of less influential DIs. Therefore, it makes 

sense that the Fitness Value (FV) increases with subsequent analyses, showing a lesser fit. The unbiased damage detection 

results with 100% TV is again unsuccessful. An inspector would not be able to decipher a relative weakness since 

indication varies between 18% to 39%, less than a 50% chance everywhere. The FVs are high, and Round 1 uses too 

many DIs to make any kind of fit. 

TABLE 3: DAMAGE DETECTION RESULTS FOR SPANS 2 VERSUS 3 

Unbiased Target Vector = 100% 

   

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 2.0015 1435 12 None Clear 

Round 2, 5 Runs 3.0219 1388 6 None Clear 

Round 3, 5 Runs 3.4026 316 2 None Clear 

Unbiased Target Vector = 0% 

   

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 1.0121 1027 2 Correct end, single point 

Round 2, 5 Runs 1.1098 952 1 Wrong location 

Round 3, 5 Runs 1.2238 933 3 Correct end, multiple points 

Biased Target Vector = 3 End Points 

  

 

Fitness Value 

(FV) 

Generations to 

Stop (max 5000) 

Number of 

DIs in Fit Description of Damage Indication 

Round 1, 5 Runs 1.7736 814 4 Correct end, wrong point, scatter 

Round 2, 5 Runs 1.9362 750 2 Correct end, wrong point 

Round 3, 5 Runs 2.0896 696 6 Correct end, wrong point 

Fig.3 illustrates the three rounds of best fit for the unbiased damage detection results using 0% TV. Fitness Values are 

reasonable (1.01-1.22) and increase with round number as expected. Using 2 of 24 DIs, Round 1 results in a single point 

of 98% detection at (x,y)=(30 feet, 26 feet); this is a possibility but not an expected point directly on the damaged 

expansion joint. However, the substructure’s condition was unknown for Span 2. Using just 1 of 22 DIs, Round 2 

produces an unexpected point (x,y)=(90 feet, 13 feet) with a 95% indication. One DI alone raises suspicion of an outlier, 

but this is possible. Using 3 of 21 DIs, Round 3 results in more likely points, 97% at (x,y)=(15 feet, 0 feet) and 59% at 

(x,y)=(15 feet, 15 feet) 59%. These are at the correct end, but again a bit further towards mid-span than expected. 
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Fig. 4 provides the three rounds of best fit for the biased damage detection results using fully damage indication at the 

three end points of x=0 feet. All rounds show damage at the correct end but not the expected end points on the expansion 

joint. Because the substructure’s condition was unknown, perhaps the damage really was worse underneath point nearby 

the expansion joint. At 1.77-2.09, Fitness Values are surprisingly higher than the unbiased case (1.01-1.22); this may 

indicate a lower ability of the data fitting the expected damage.    

Using 4 of 24 DIs, Round 1 shows some scatter with a maximum of 72% detection at (x,y)=(30 feet, 26 feet); this is the 

same point of the unbiased 0% TV but with a greater indication of 98%. Using 2 of 20 DIs, Round 2 produces a possible 

damaged point of (x,y)=(15 feet, 0 feet) with a 85% indication. Using 6 of 18 DIs, Round 3 results are similar to Round 2 

but with a lower maximum at 55% at (x,y)=(15 feet, 0 feet).  

IV.   CONCLUSION 

Prior studies as well as this work show that damage detection using 100% does not provide reasonable output [12]. For 

both comparisons to Span 3, the unbiased 0% TV produced the same or perhaps better results in both fit and detection 

than the biased TV with end point damage. This is an exciting outcome because it implies that an a priori visual 

inspection is not required for this bridge span comparison. 

Prior studies showed that end damage is most identifiable because support conditions affect every mode shape [13]. 

Herein, Fig. 2 would send an inspector to the correct end of Span 1 where scour exists. The data mining is consistent with 

the visual inspection. Five of the six illustrations in Figs. 3 and 4 would also send an inspector to the correct quarter of 

Span 2 where spalling has occurred. The visual inspection notes end damage, but the data mining shows more structural 

damage within 30 feet of the concerning expansion joint. Still, a more pointed visual inspection is permitted post-analysis. 

Round 1 should always be carefully considered as it uses all 24 3-D Damage Indices. A round with an outlier result is 

difficult to recognize, but use of any GA stopping criterion besides tolerance is a clear identifier. Other considerations 

include use of a single fit DI and an inconsistent location to other rounds. Additionally, too much scatter often involves a 

poor detection range and large numbers of DIs attempting a fit. 

This work is based upon several hypotheses that may introduce uncertainty. Considering Span 3 as a control implies that 

this span does not have damage of its own. End damage is assumed to be the physical effect; for instance, the expansion 

joint damage may have been superficial, and the contractor observed spalling was closer to mid-span from the 

substructure. Regarding the data capture, time and cost were deemed the limiting factor to number of test nodes and 

sensor connections. More points should always be better, but constraints will always need to be considered. Lastly, it is 

assumed that wind excitation was enough excitation to show damage through tri-axial coupling. 

 

 

FIGURE 3: UNBIASED DAMAGE DETECTION RESULTS FOR SPANS 2 VERSUS 3 

Round 1 

Round 2 Round 3 
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FIGURE 4: BIASED DAMAGE DETECTION RESULTS FOR SPANS 2 VERSUS 3 
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